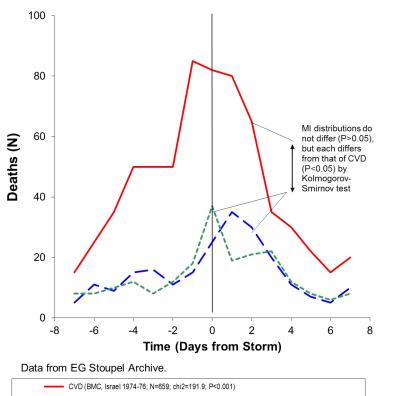
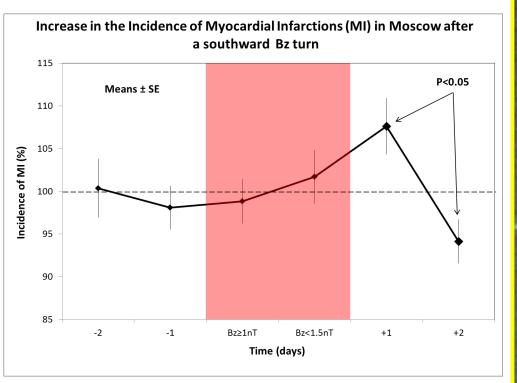

Space weather, the atmosphere, and human health on Earth and in Space

Germaine Cornelissen¹, Elena V Syutkina², Anatoly Masalov³, Tamara Breus⁴, Yoshihiko Watanabe⁵, Kuniaki Otsuka⁵

¹ Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN, USA
² Scientific Center of Children's Health, Russian Academy of Medical Sciences, Moscow, Russia
³ Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
⁴ Space Research Institute Russian Academy of Sciences, Moscow, Russia
⁵ Tokyo Women's Medical University, Tokyo, Japan

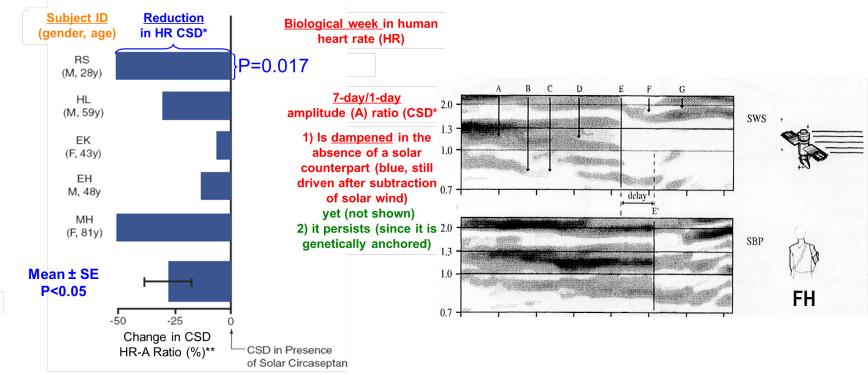

Evidence accumulates for effects of space weather - on human physiology



Evidence accumulates for effects of space weather - on human

pathology

Geomagnetic Activity and Mortality from Cardiovascular Disease (CVD) and Myocardial Infarction (MI)



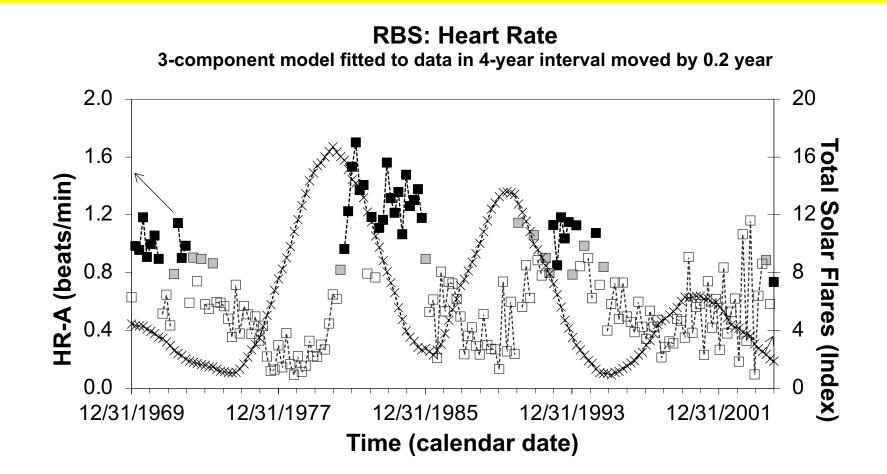
- ---- MI (BMC, Israel 1974-76; N=225; chi2=74.9; P<0.001) BMC: Belingson Med. Center
- --- MI (USSR hospitals 1962-68; N=209; chi2=68.5; P<0.001) P-values test uniform distribution.

Documentation by superposed epochs, remove-and-replace, and periodicities shared between environment and

biota

^{*}CSD: circaseptan (7-day)-to-circadian (1-day) A ratio

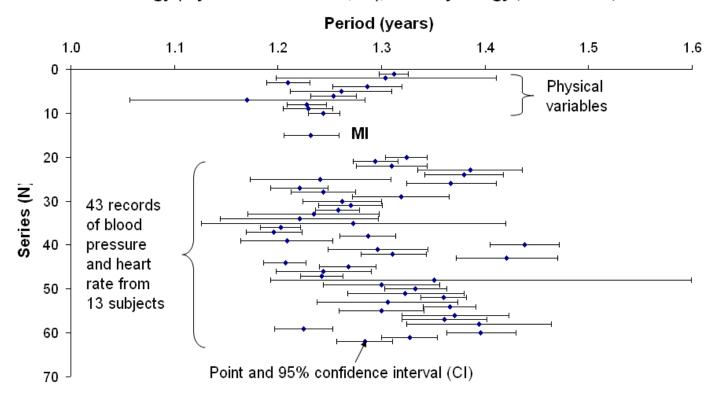
**When 7-day component in sunspot area has no 7-day component (as analyzed by Y.S. Vernova et al., Geomagnetism and Aeronomy 1983; 23: 425-427).


Shared periodicities include about 5-month cycles found in solar flares

6.0 5.4 4.8 4.2 3.6 months MESOR 24h-Amplitude 08:00 Endpoint 12:00 0.42 year. 16:00 5.04 months. 153.4 days, 20:00 or 75 nHz 00:00 04:00 0.50 0.45 0.40 0.35 0.30 183 146 128 110 164 Period (years/days) [95% confidence interval]

Cis-Half-Year Characterizes Human Circulating Melatonin*

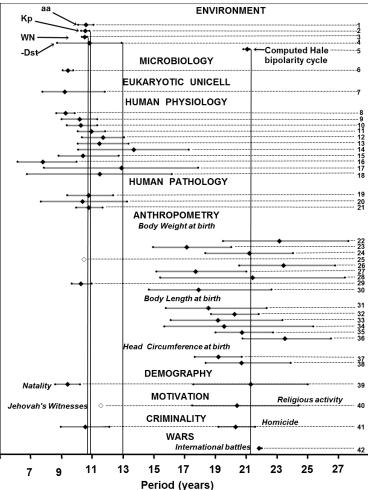
* 172 patients (Oct 1992 - Dec 1995), each providing 4-hourly blood samples for 24 hours in Florence, Italy.


Shared periodicities include about 5-month cycles found in solar flares

Shared periodicities include about 1.3-year cycles found in the solar

wind

The Trans-year (an ~1.3-year component) in the Cosmos (top 10 rows), Pathology (myocardial infarction, MI), and Physiology (bottom 43 rows)*



* All differing by non-overlapping 95% CIs from the precise calendar year and many differing among each other, a putative hint of endogenicity.

Shared periodicities include about 11and 22-year cycles found in solar

activity

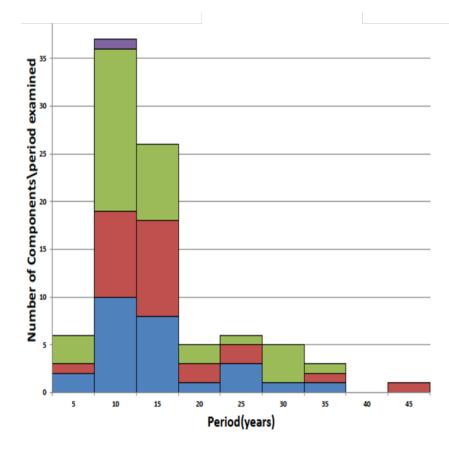
CHRONOMICS: ~10.5- and ~21-YEAR CYCLES AROUND and IN ORGANISMS


cill olloi	nı	cs: ~10.5-	ana	~21-year	сус	les i	n an	id aroui	าส น	S	
					Per	iod (ye	ars)				
					Low er	Best	Upper	Series dura	ation	Number	Geographic
	Lin	e			limit*	Fit	limit*	Dates	Years	of data	site
Environment	1	aa = Antipodal Geo			10.12		11.13	1890-1999	110	1 / year	
	2	Kp = Planetary Ge			10.32		10.85	1932-1999	68	1 / month	
	3	WN = Wolf relative sunspot number			10.37	10.54	10.70	1890-1999	110	1 / year	
	4	-Dst = Equatorial geomagnetic disturbance			8.75	10.85	12.96	1973-1999	27		
					10.48	10.51	10.55	1700-1999	300		
	5	Bipolarity "Hale Cy	cle" **		20.86		21.26	1890-1999	110		
					21.42	21.428		1700-1999	300	"	
Biology	6	Prokaryotes: Air B			9.12	9.45	9.81	1970-1982	13	3,744	Italy
	7	Eukaryotes: Unicel	lular Alg	al O ₂ Production	7.79	9.24	11.87	1980-1991	11	324	Germany
Physiology***	8	Mood (RBS)			10.11	11.50	13.41	1966-1998	33	~5 / day	USA
	9				9.38	10.29	11.37	1966-1998	33		
	10	Urinary 17-ketosteroid excretion (CH)			8.70	9.30	9.90	1948-1963	15	1 / day	Denmark
	11	Peak Expiratory Flo	ow (RBS]	10.36	11.74	13.11	1966-1998	33	~5 / day	USA
	12	Respiratory Rate (RBS)			10.13	12.50	17.32	1966-1998	33	"	
	13	Systolic Blood Pressure - SBP (RBS)			9.05	10.21	11.36	1966-1998	33		
	14	Standard Deviation of SBP (YW)			8.85	10.43	12.76	1987-1998	11	~48 / day	Japan
	15	Diastolic Blood Pressure - DBP (RBS)		10.09	10.98	11.87	1966-1998	33	~5 / day	USA	
	16	Standard Deviation of DBP (YW)		6.18	7.82	10.02	1987-1998	11	~48 / day	Japan	
	17	Heart Rate - HR (YW)		9.54	12.93	17.91	1987-1998	11	"		
	18	Standard Deviation of HR (YW)		8.27	11.52	16.22	1987-1998	11			
	19	Myocardial Infarction		10.00	10.80	11.70	1960-1996	37	129,205	USA	
	20	Leptospirosis		9.40	10.80	12.40	1949-1995	47	2.907	Slovakia	
	21	Diabetes			7.70	10.40	13.30	1985-1995	11	1,369	"
Anthropo-	21	Body Weight	Boys		1.10	10.40	10.00	1000-1000		1,000	
	22	body Weight	Minne	sota	19.53	23.19	27.67	1963-1998	36	2,136,745	USA
at birth	23	Alma-Ata Russians		14.99	17.17	20.07	1946-1998	53	9,056	Kazakhsta	
	23		Aina-	Kazakhs	18.39		24.05	1946-1998	53	3,459	"
	25	Moscow		10.00	10.49	24.00	1874-1985	112	5,987	Russia	
	20	Girls			10.45		1074-1000	112	0,001	143314	
	26	Minnesota		20.58	23.46	26.83	1963-1998	36	1.039.464	USA	
	27	Alma-Ata Russians		15.21	17.75	21.06	1946-1998	53	9,105	Kazakhsta	
	28	Kazakhs		15.44		27.45	1946-1998	53	3,448	1\d2dki13tdi	
	20 29		Manaa		9.70	10.29	11.01	1874-1985	112	5.840	Russia
	29		Moscow Both genders		9.70	10.29	11.01	1674-1965	112	5,640	Russia
	30		Denma		14.71	17.94	22.68	1973-1994	22	1,166,206	Demenal
	30	B		ar K	14.71	17.94	22.00	1973-1994	22	1,100,200	Denmark
	~	Body Length	Boys		45.00	40.50	00.00	1010 1000	50	0.000	K
	31			Ata Russians	15.82	18.58	22.38	1946-1998	53	9,026	Kazakhsta
	32		Mosco	w	18.76	20.28	21.86	1874-1985	112	5,976	Russia
			Girls		40.42	40.00	00.00	4040 4000	50	0.405	Keesthe 1
	33		Alma-	Ata Russians	16.13		23.39	1946-1998	53	9,105	Kazakhsta
	34			Kazakhs	15.72		25.40	1946-1998	53	3,485	Dural
	35		Mosco		19.05	20.76	22.78	1874-1985	112	5,976	Russia
			Both g				00.57	1070 1071		1 100 00 -	
	36		Denma	ark	20.81	23.55	26.55	1973-1994	22	1,166,206	Denmark
		Head Circumfere				10.07		1071 1077			
	37		Boys	Moscow	17.71	19.23	20.75	1874-1985	112	5,976	Russia
	38		Girls		18.42		23.95	1874-1985	112	5,820	
Demography	39	Birth rate			8.63	9.43	10.23	1940-1996	57	57	USA
					17.61	21.33	25.05	1940-1996			
	41	Religious activity of	Jehovah	's Witnesses	17.52	20.44	24.45	1950-1999	50	328,572"	Worldw ide
										5,653,987##	
Criminality	40	Homicide			8.99	10.58	12.16	1900-1998	99	99	USA
					19.23		21.62				
Wars		International battles			21.87	21.96	22.06	599BC-1957	2556	2556	Worldw ide

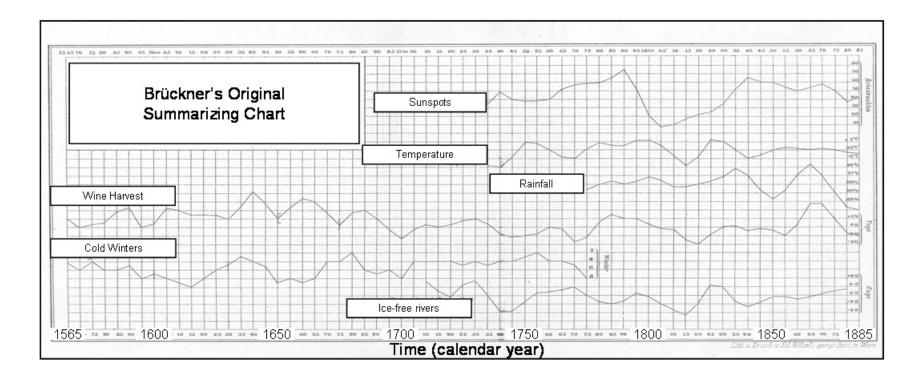
** Computed by changing the sign of WN at each WN minimum. # in 1950, ## in 1999, pool of 103 plus other unspecified number of sites

***RBS - Dr. Robert B. Sothern, CH - Dr. Christian Hamburger, YW - Dr. Yoshihiko Watanabe

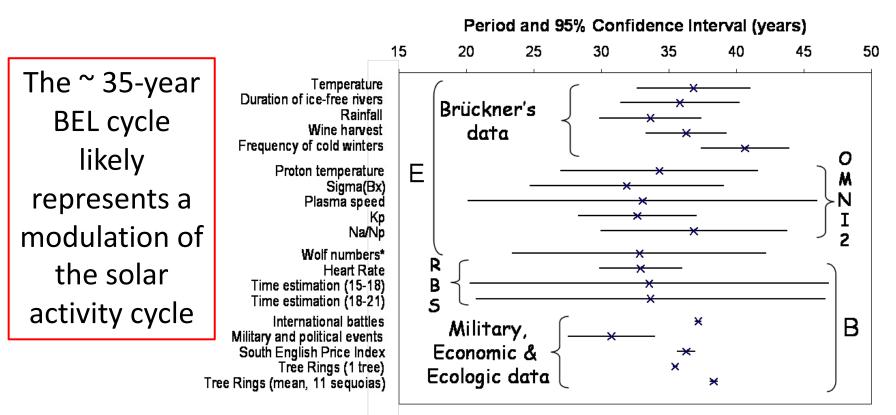
Shared periodicities include about 11and 22-year cycles found in solar


<u>activitv</u>

Time (calendar date)

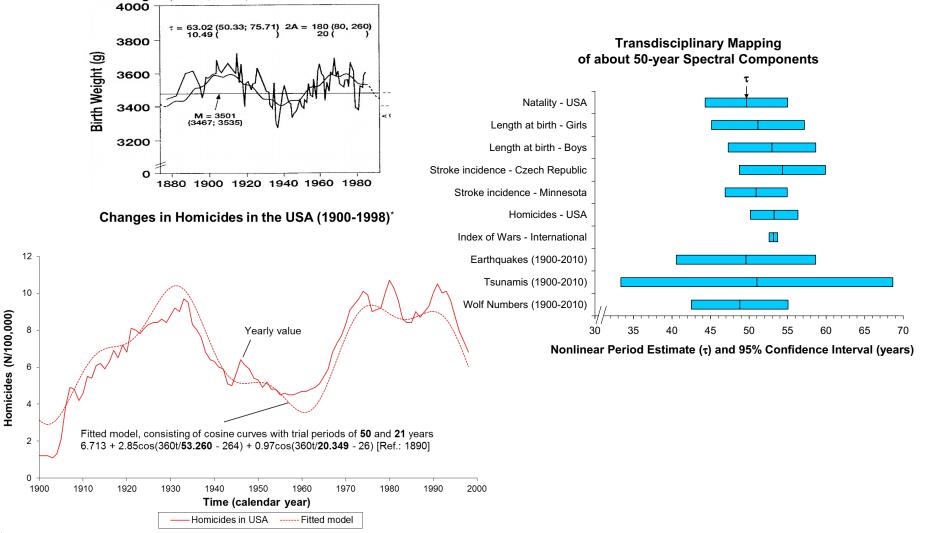

About 11-year cycles are found in many of the longitudinal records of blood pressure and heart rate from normotensive as well as treated hypertensive subjects

About 11-year cycles



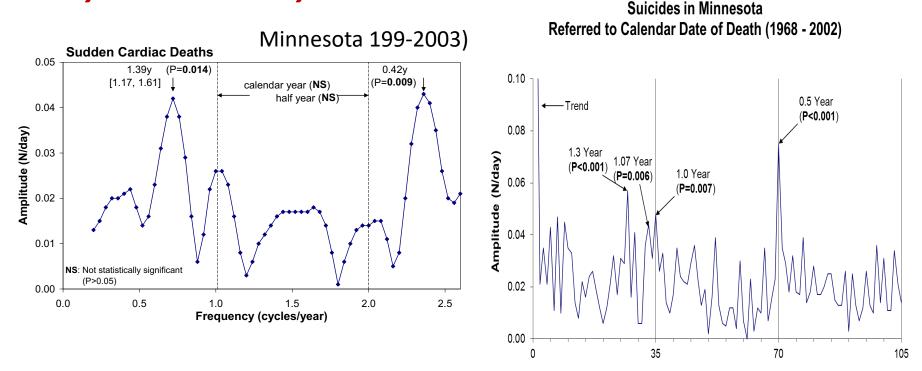
Shared periodicities include about 35-year cycles found in solar activity

Brückner-Egeson-Lockyer (BEL) Cycle Historical Macroscopy (top) and Time-Microscopy (bottom)


Shared periodicities include about 35-year cycles found in solar activity

* Same about 40-year span as that of heart rate of 20-60 year-old man (RBS), assessed in 3-component model; RBS also estimated 1 minute by counting; results shown for measurements taken between 15:00 and 18:00 and between 18:00 and 21:00

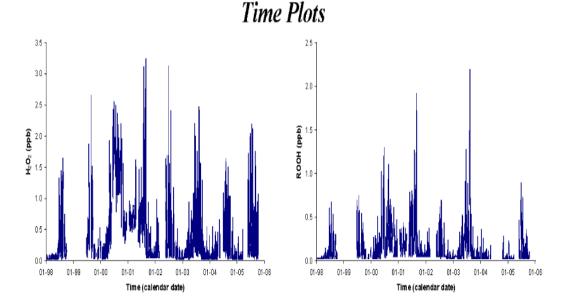
E: Environment; B: Biosphere


Shared periodicities include about 50-year cycles

* National Center for Health Statistics (Homicide rates from the Vital Statistics: http://www.ojp.usdoj.gov/bjs/glance/hmrt.htm)

Solar signatures are found in mortality statistics (sudden cardiac death, suicide)

Transyear: about 1.3-year

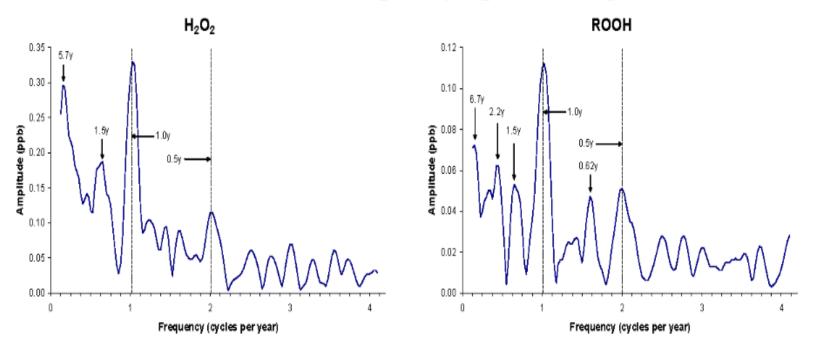


Frequency (cycles in 35 years)

Transyears characterize atmospheric compounds

Measurements at Zugspitze/Hohenpeissenberg station, Germany

Some Atmospheric Variables (1998-2005; 8 years)


In addition to prominent daily rhythms in hydrogen peroxide (H_2O_2) and higher organic peroxides (ROOH), a transyear with a period of about 1.3 years is detected with statistical significance along with a yearly variation.

Data from S Gilge.

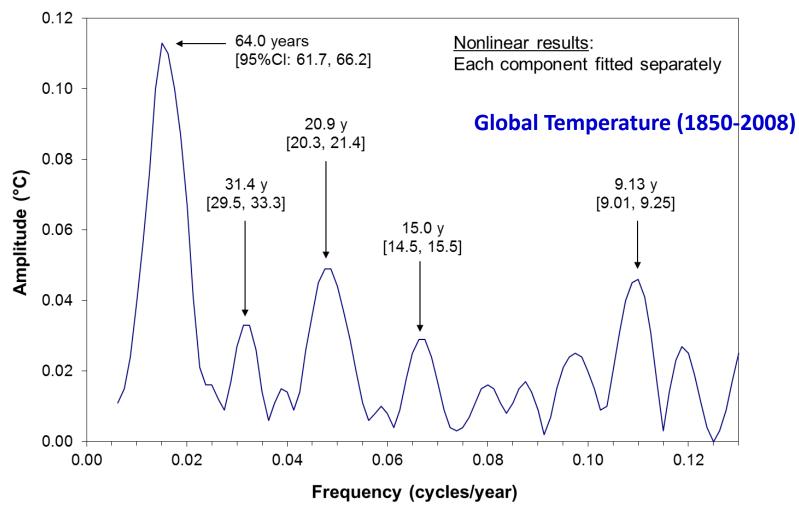
Transyears characterize atmospheric compounds

Measurements at Zugspitze/Hohenpeissenberg station, Germany

Focus on Low-Frequency Spectral Region

Data from S Gilge.

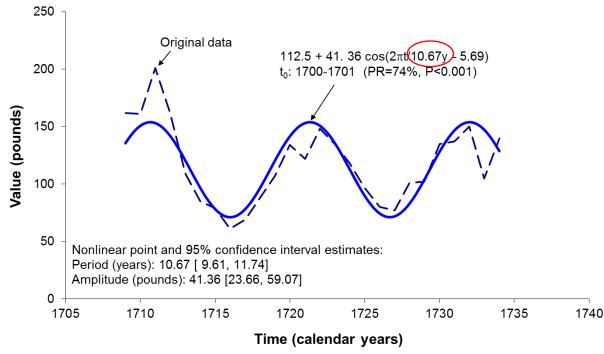
Transyears characterize atmospheric compounds


Measurements at Zugspitze/Hohenpeissenberg station, Germany

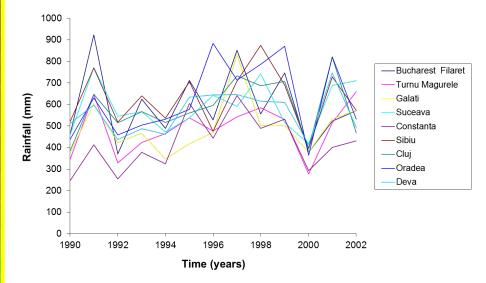
- A transyear was further documented to characterize the F10.7 cm index (2007-2012).
- Since F10.7 correlates well with a number of ultraviolet and visible solar irradiance records, and
- since ultraviolet irradiance is absorbed in the upper atmosphere, which heats the upper atmosphere and ionizes it to create the ionosphere,
- it is likely that periodicities such as the transyear detected in several atmospheric variables may reflect solar variability, transmitted through changes occurring in the ionosphere.

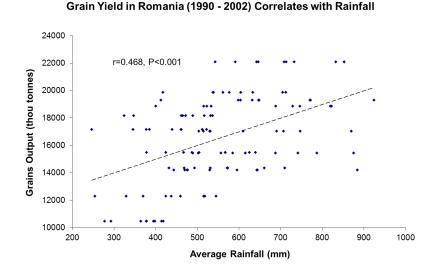
Data from S Gilge.

Decadal cycles and economics


Decadal cycles characterize changes in the Earth's surface temperature

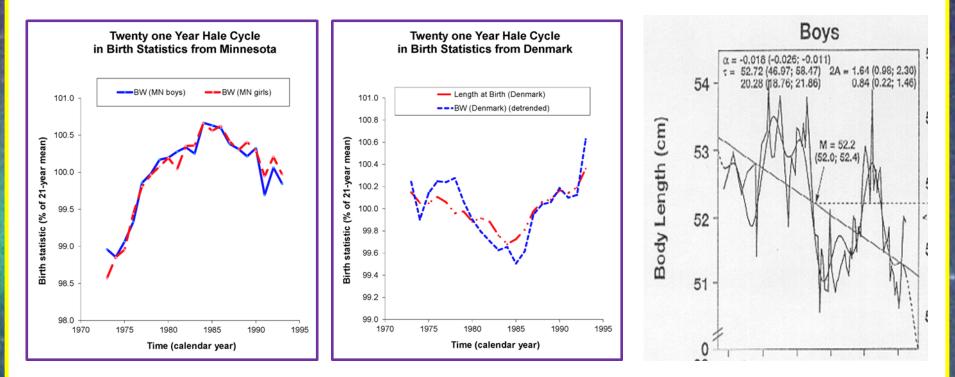
Decadal cycles and economics


Hyde Clarke (1838) first reported an about 11-year economic cycle.


Data from: William Milburn (1813)

Decadal changes were quantified for a number of data published by William Milburn in relation to goods imported by the Honorable East India Company between 1708-1709 and 1733-1734

Cycles in economics and agriculture

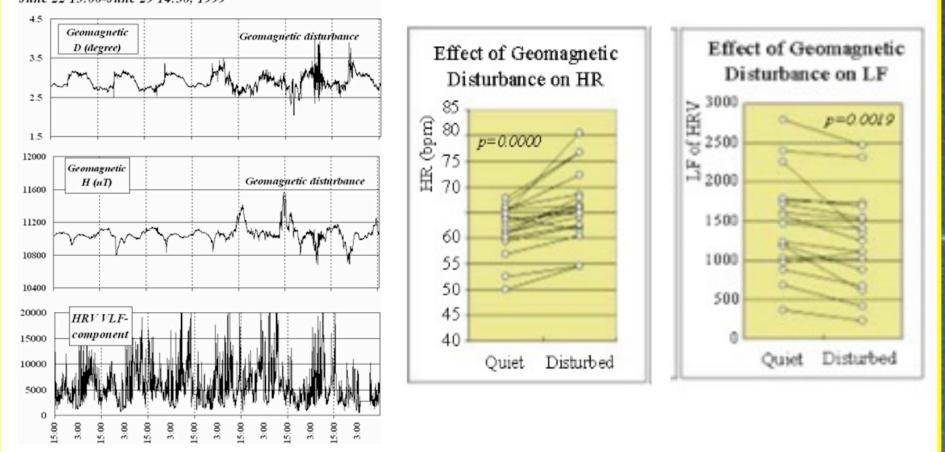

Decadal changes were also quantified for agricultural productivity during nearly 3 decades in Romania.

Total cultivated area and total production of wheat and rye, barley, corn, soya and sunflower in Romania: on average, all 5 crops follow an about 10.7-year component.

Data from C Turtoi.

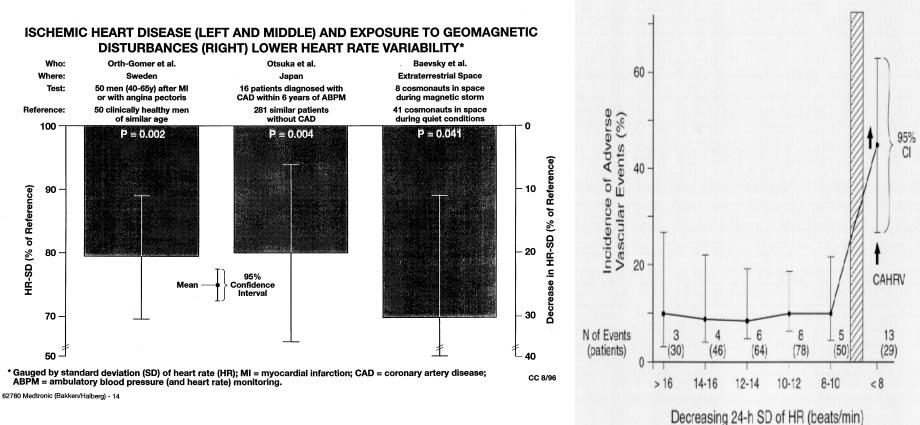
Influence on health at birth?

Agriculture and economic cycles may affect health via epigenetics.

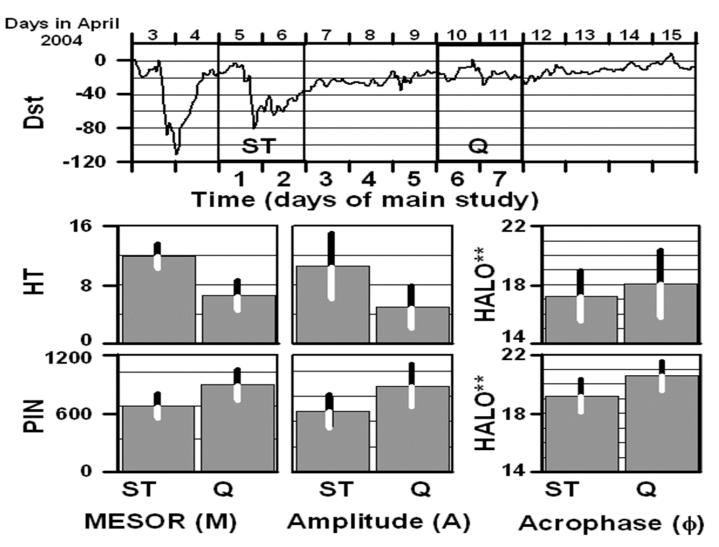


Oscillations with periods of about 50, 21, and 10.5 years have been documented for anthropometric measurements at birth in Russia, Kazakhstan, Spain, Denmark, and Minnesota (USA) and during adulthood in Austria.

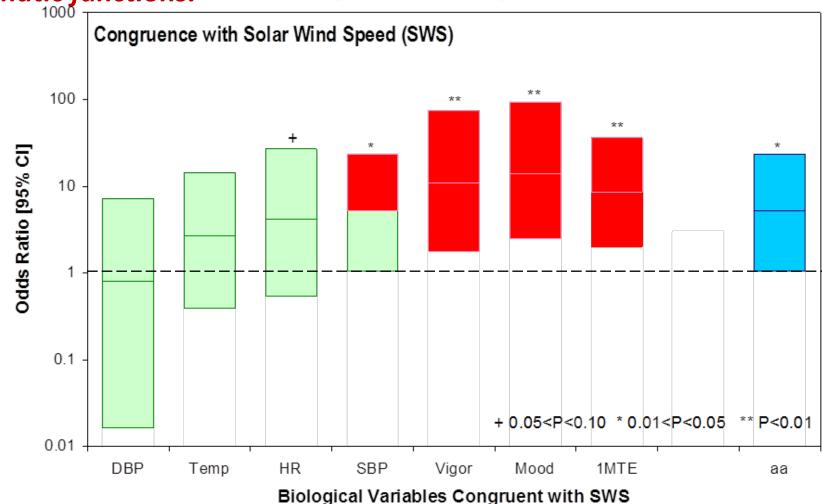
Mechanisms - Heart


Geomagnetic storms are associated with a decrease in HRV.

27 yrs., man June 22 15:00-June 29 14:30, 1999


Mechanisms - Heart

A decreased HRV constitutes a cardiovascular disease risk.


Mechanisms - Brain

Magnetic storms are associated with decreased nocturnal melatonin.



Mechanisms - Brain

Mental functions are more closely associated with space weather than somatic functions.

These results are being compiled into an "Atlas of Chronomes".

Visit us at https://sites.google.com/a/umn.edu/halbergchronobiologycenter/

Thank you