Some chronobiologic applications of the Chronomics Analysis Toolkit in R

'Cathy Lee Gierke, ${ }^{2}$ Jarmila Siegelova, ${ }^{3}$ Yoshihiko Watanabe, ${ }^{2}$ Kuniaki Otsuka, ${ }^{4}$ Denis Gubin, ${ }^{1}$ Germaine Cornelissen

${ }^{1}$ Halberg Chronobiology Center, University of Minnesota, Twin Cities
${ }^{2}$ Masaryk University, Brno, Czech Republic
${ }^{3}$ Tokyo Women's Medical University, Daini Hospital, Tokyo, Japan
4Department of Biology, Medical Academy, Tyumen, Russia

CATkit, R suite, performs rhythm analyses

Visual Assessment

- Actogram,
- Smoothing,
- Autocorrelation,
- Crosscorrelation,
- Periodogram by FFT

Only equidistant data

Quantitative results

- Single-component cosinor;
- Multiple-component cosinor;
- Least squares spectrum;
- Serial section cosinor;
- Gliding spectrum

Multiple-component cosinor model:
 SBP variation over 7 days

Multiple-component cosinor model

Two sinus waves are fitted to one week of data: 24 hours \& 12 hours 7 full compound cycles can be seen in the 7 day plot. Siegelova.

Multiple-component cosinor model: 24 \& 12 hours Subject 7: SBP variation on day 4

Multiple-component cosinor model

Two sinus waves are fitted to one day of data: 24 hours; 12 hours 1 full compound cycles.

Daily SBP MESOR by Subject

SD of MESOR of SBP varies from 6.4 to 1.6 between days. Average Average MESOR of SBP varies from 107 to 137 between subjects.

Daily SBP Amplitude by Subject

SD of Amplitude of SBP varies from 8.5 to 1.3 between days.
Average Amplitude of SBP varies from 6.6 to 18.7 between subjects.

Angina pectoris incidence by time of day and week
14 years of data stacked over 1 week, Sunday to Saturday

Column: 2: 2000-12-31 00:00 -- 2001-01-07 00:00

Time (hour) from reference date: 2000-12-31

Angina pectoris by time of day

Ambulance calls related to angina pectoris (ICD10, code I20) (Khanty database, D Gubin, Siberia)

Angina pectoris incidence by time of day and week 14 years of data stacked over 1 week

Least Squares spectrum by Cosinor

Two harmonics show up clearly: 24 hours and 12 hours
P values show statistical significance for both.

Angina pectoris incidence by time of day and week

 14 years of data stacked over 1 week

Multiple Components cosinor model

24 and 12 hour cosines used to model the data, overlaid with data.
Ambulance calls for ICD10, code 120 for anaina pectoris.

Transatlantic flight shifts circadian activity rhythm June 16, 2015 to July 13, 2015

Column 2; Compo 24: Time (hour) from reference date: 2015-(6-6

Actigraphy: ZCM activity data

Data collected before, during and after a transatlantic shift in time zones. June 25 - July 9 are 7 hours different.

Transatlantic flight shifts circadian activity rhythms June 16, 2015 to July 13, 2015

Z4-nI penioa. Jenlai secinon z4-nir spans moved by 4 hrs. (from multi-component

fitl

Phase shift due to time change: $\Delta \varphi \sim 7$ hrs

Transatlantic flight shifts circadian activity rhythms June 16, 2015 to July 13, 2015

Iz-nir penioa. senar secinon z4-nir spans moved by 4 hrs. (from multi-component

fitl

Phase shift due to time change: $\Delta \varphi \sim 7$ hrs

Gliding Spectrum: days 0-40 (960 h)

A spectrum of SBP frequencies is assessed for successive, overlapping spans of 168 hours moved by 12 hours, giving a 3-dimensional visual readout.

Running CATkit

- Install R
- z.umn.edu/CATkit
- .r file on the desktop
- Double click to run
- Slight changes in the script are madefor each new technique

Call to CATkit

CATCosinor(
TimeCol $=1, Y=c(2,5)$, Components=1,
RefDateTime="199210192152", timeFormat="\%Y\%m\%d\%H\%M",
RangeDateTime=list(Start="199211230000", End="199211300000"), fileName=fileName, functionName="FWeditedLWK-HRsp"

Progressive=list(Interval=0, Increment=0),
Period=list(Set=0,Start=168,Increment=.5,End=5.5),
)

Chronomics Analysis Toolbox [CAT]
 12 Oct, 2015--13:08:35

Thank you!
Halberg Chronobiology Center

CATkit: z.umn.edu/CATkit

