Some chronobiologic applications of the Chronomics Analysis Toolkit in R

¹Cathy Lee Gierke, ²Jarmila Siegelova, ³Yoshihiko Watanabe, ²Kuniaki Otsuka, ⁴Denis Gubin, ¹Germaine Cornelissen

¹Halberg Chronobiology Center, University of Minnesota, Twin Cities

²Masaryk University, Brno, Czech Republic

³Tokyo Women's Medical University, Daini Hospital, Tokyo, Japan

⁴Department of Biology, Medical Academy, Tyumen, Russia

CATkit, R suite, performs rhythm analyses

Visual Assessment

- Actogram,
- Smoothing,
- Autocorrelation,
- Crosscorrelation,
- Periodogram by FFT

Only equidistant data

Quantitative results

- Single-component cosinor;
- Multiple-component cosinor;
- Least squares spectrum;
- Serial section cosinor;
- □ Gliding spectrum

Multiple-component cosinor model: SBP variation over 7 days

Multiple-component cosinor model

Two sinus waves are fitted to one week of data: 24 hours & 12 hours 7 full compound cycles can be seen in the 7 day plot. Siegelova.

Multiple-component cosinor model: 24 & 12 hours Subject 7: SBP variation on day 4

Systolic Blood Pressure

Multiple-component cosinor model

Two sinus waves are fitted to one day of data: 24 hours; 12 hours 1 full compound cycles.

Daily SBP MESOR by Subject

SD of MESOR of SBP varies from 6.4 to 1.6 between days. Average Average MESOR of SBP varies from 107 to 137 between subjects.

Daily SBP Amplitude by Subject

SD of Amplitude of SBP varies from 8.5 to 1.3 between days. Average Amplitude of SBP varies from 6.6 to 18.7 between subjects.

	Bland-Altman	Ν	SD	LOA-	LOA	Bias	Paired-t	Ρ
				MESO	R			
N	Day-to-Day av	g [;]	3.7	-7.5	7.1	-0.2	0.490	0.625
F	– 7-day avg Vs 7-day Average)	3.7	-7.4	7.0	-0.2	0.436	0.664
	24-ho <mark>u</mark> r Amplitude							
Μ	Day-to-Day av 7-day avg	⁄g –	4.9	-8.4	11.0	1.3	2.554	0.012
F	Vs 7-day		3.1	-5.5	6.8	0.6	2.008	0.048
-		20	2 6	4 7	0.4))	2 0 2 0	0 000
	DITLEX VS INC EX	20	5.0	-4.7	9.4	2.5	2.920	0.009
BI	and-Altr	nar	ו:	diff	ere	nc	e froi	mn

Angina pectoris incidence by time of day and week 14 years of data stacked over 1 week, Sunday to Saturday

Time (hour) from reference date: 2000–12–31

Angina pectoris by time of day

Ambulance calls related to angina pectoris (ICD10, code I20) (Khanty database, D Gubin, Siberia)

Two harmonics show up clearly: 24 hours and 12 hours P values show statistical significance for both.

Angina pectoris incidence by time of day and week 14 years of data stacked over 1 week

Multiple Components cosinor model

24 and 12 hour cosines used to model the data, overlaid with data.

Ambulance calls for ICD10, code I20 for angina pectoris.

Actigraphy: ZCM activity data

Data collected before, during and after a transatlantic shift in time zones. June 25 – July 9 are 7 hours different.

moved by 4 hrs. (from multi-component fit)

Phase shift due to time change: $\Delta \phi \sim 7$ hrs

moved by 4 hrs. (from multi-component fi+)

Phase shift due to time change: $\Delta \phi \sim 7$ hrs

Gliding Spectrum: 40 days

1992/10/20 19:48:00 to 1992/11/29 17:02:00

Column: 2; 1992-10-20 00:00 -- 1992-11-30 00:00

Gliding Spectrum: days 0 – 40 (960 h)

A spectrum of SBP frequencies is assessed for successive, overlapping spans of 168 hours moved by 12 hours, giving a 3-dimensional visual readout.

Running CATkit

- Install R
- z.umn.edu/CATkit
- .r file on the desktop
- Double click to run
- Slight changes in the script are madefor each new technique

Call to CATkit

CATCosinor(TimeCol=1,Y=c(2,5), Components=1,

RefDateTime="199210192152", timeFormat="%Y%m%d%H%M", RangeDateTime=list(Start="199211230000", End="199211300000"), fileName=fileName, functionName="FWeditedLWK-HRsp"

Progressive=list(Interval=0, Increment=0),

Period=list(Set=0,Start=168,Increment=.5,End=5.5),

Chronomics Analysis Toolbox (CAT)

12 Oct, 2015--13:08:35

Halberg Chronobiology Center

CATkit: z.umn.edu/CATkit